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a b s t r a c t

A full statistical analysis of the microstructure of glass–ceramic solid oxide fuel cell (SOFC) seal material,
G18, is performed to calculate elastic properties. Predictions are made for samples aged for 4 h and
1000 h, giving different crystallinity levels. Microstructure of the glass–ceramic G18 is characterized by
correlation function for each individual phase. Predicted results are compared with the Voigt and Reuss
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bounds in this study. The weak contrast analysis results in elastic modulus predictions between the upper
and lower bounds but closer to the upper bound.

© 2010 Elsevier B.V. All rights reserved.
emperature dependent modulus
ging

. Introduction

.1. Background

SOFCs have a promising future as an alternative power source.
OFCs are quiet, fuel flexible (hydrogen or carbon monoxide), effi-
ient, and have size flexibility. Among all the SOFC designs, planar
OFCs have by far the highest power density. One of the main chal-
enges in the development of planar SOFC is that they require a
ermetic seal between the fuel and air sides of the electrodes. Seals
ay also be used to connect the components within the fuel cell.
lass–ceramic SOFC seals are usually made by tape casting green

ape and sintered.
The main seal functions include preventing mixing of oxi-

ants and fuel, preventing leaking of oxidants and fuel, electrically
solating cells from each other, and serving as a bond between com-
onents. If the seal allows mixing or leaking of the fuel and oxidants,
he performance of the SOFC will degrade significantly, and may not

ven function. Also, because the seal is bonded to the components
n the fuel cell, such as the cathode, electrolyte, and anode, the seal

ust be functional for the entire design lifetime of the fuel cell
1–3].

∗ Corresponding author at: Georgia Institute of Technology, 771 Ferst Dr., Love
ldg Rm 353, Atlanta, GA 30332, United States. Tel.: +1 978 870 7944;

ax: +1 404 894 9140.
E-mail address: jackie.milhans@gmail.com (J. Milhans).

378-7753/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2010.03.079
In order to increase fuel cell life and cut costs of seal opti-
mization, it is necessary to investigate the relationship between
the microstructure and material properties. This seal must be sta-
ble under thermal cycling, chemically compatible and structurally
strong. The seal should also have mechanical and thermal prop-
erties that are similar to the neighboring components within the
cell. The main property that needs to be matched is the coeffi-
cient of thermal expansion. For most ceramic fuel cell components,
such as the anode, cathode, and electrolyte, this is a CTE of about
10–11 × 10−6 K−1, and 12 × 10−6 K−1 for the metal interconnects
[1,4–6]. In general, it is desired to more closely match the CTE
of the ceramic materials, as they are more prone to cracking
and damage. Thermally induced stress is a very important issue
in predicting fuel cell life during thermal cycling. In order to
predict thermal induced stress, elastic properties must be inves-
tigated.

In this study, statistical two-point correlation functions have
been calculated from SEM images of aged and unaged G18 with
different crystallinity. Using two-point correlation functions is
a numerically efficient methodology to characterize microstruc-
tures and extract information about volume fractions and the
details of the microstructure such as morphology, clustering or
banding [7–13]. These correlation functions can be used to rep-

resent the entire microstructure if the microstructure is uniform
in all three dimensions, which is the case of the material in this
study. These two-point correlations will be used in a homog-
enization scheme to predict the elastic modulus of the seal
material.

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:jackie.milhans@gmail.com
dx.doi.org/10.1016/j.jpowsour.2010.03.079
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Fig. 2. G18 aged for 4 h and heated again to 800 ◦C and cooled.
J. Milhans et al. / Journal of Po

.2. Material

Glass–ceramic seals have been commonly used in solid oxide
uel cells (SOFCs) due to their low cost and ease of manu-
acturing. Glass–ceramics are resistant to degradation and are
xcellent for high temperature applications. They are good candi-
ates for hermetic seals, since SOFCs operate at high temperatures,
sually between 700 ◦C and 1000 ◦C. On the other hand, these
lass–ceramic seals can also be vulnerable to damage and failure,
ue to their brittle nature, unwanted chemical reactions, or poros-

ty. The reliability of the seal is of paramount importance, since
t separates the multiple chambers of the fuel cell and prevents
eactants and products from mixing. If the seal is not chemically
ompatible or susceptible to degradation, this can lead to a waste
f fuel and can pose as a safety hazard [3,14]. Replacing failed seal
s very time consuming and costly, since it is inside of the fuel cell
nd bonded to several parts of the cell. Development of a depend-
ble, durable seal prolongs the life of the fuel cell. Therefore it is a
ritical element in SOFC commercialization.

The Pacific Northwest National Laboratory (PNNL) has devel-
ped a glass–ceramic, i.e. G18 for potential application in SOFCs.
18 is a barium–calcium–aluminosilicate (BCAS)-based glass, with
oron oxide added for better control over the coefficient of ther-
al expansion and viscosity. After the initial sintering of the glass,
crystallization of approximately 55% barium silicate has been

bserved. There are also small amounts of other phases, includ-
ng hexacelsian (BaAl2Si2O8 with a hexagonal structure) crystalline
hase and an unknown solid solution amorphous phase. The rest
f the material stays as glassy phase. This glass–ceramic has
hown increasing crystallization, up to 72%, after aging and thermal
ycling. Unfortunately, at the same time, the hexacelsian develops
monoclinic structure, causing the coefficient of thermal expan-

ion (CTE) to decrease. This low CTE leads to cracking in the seal,
ecause the seal cannot expand with the rest of the materials in
he cell. That is to say, when the fuel cell is heated after thermal
ycling, the sealant remains attached to the neighboring materials,
ut cracks are initiated and grow since the sealant cannot expand
t the same rate [1,4,14–17].

The G18 samples shown in Figs. 1–4 are sintered in air at 850 ◦C
or an hour, and then aged for 4 h at 750 ◦C. Further aging is then
one at 750 ◦C for samples aged for 1000 h. For the images of the
amples that had been heated to 800 ◦C, it is assumed that the

icrostructure did not heavily change in morphology of volume

raction after being cooled to take the SEM image, and therefore
an compare high temperature elastic property data to prediction
esults. These samples had been heated to 800 ◦C for four-point

Fig. 1. G18 aged for 4 h.
Fig. 3. G18 aged for 1000 h.

flexural tests in another study. The images show that there was
some change to the microstructure due heating and cooling.
As previously mentioned, crystallinity in the initial sintering
of the G18 is around 55%. The main crystallized phase is barium
silicate, which appears as the white phases in Figs. 1–4, in the amor-
phous phase, showing as the grey phase. With further aging, small

Fig. 4. G18 aged for 1000 h and heated again to 800 ◦C and cooled.
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Table 1
Elastic and shear modulus of unaged and aged G18 at different temperatures
[7,24,25].

Sample Elastic modulus (GPa) Shear modulus (GPa)

G18 aged 4 h (22 ◦C) 77.7 30.5
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G18 aged 4 h (600 ◦C) 67.7 26.4
G18 aged 1000 h (22 ◦C) 60.8 25.7
G18 aged 1000 h (800 ◦C) 67.4 27.5

mounts of other phases form in the glassy matrix, including hex-
celsian (hexagonal BaAl2Si2O8), monoclinic celsian (BaAl2Si2O8),
nd (BaxCay)Si4. The hexacelsian, which appear as the darker grey,
harp needles in Figs. 1 and 2, is not clearly shown in Figs. 3 and 4,
eaving only slight outlines of the phase. The darkest phase in the

icrographs are pores, which are much smaller and surround the
arium silicate phase in the 1000 h aged samples. The unknown
rystalline phases and monoclinic celsian are not seen in these
mages.

After the initial heat treatment, barium silicate appears as
eedle-like phase. These needles have grown with no preference
o orientation. With further aging, darker needles of hexacelsian
egin to appear. These needles are shorter and smaller, while they
re still much less significant in volume fraction when compared
ith barium silicate and glassy phases [1].

The elastic and shear modulus values of G18 are given in Table 1
6,18,19].

. Effective property predictions

.1. Two-point correlation functions

Two-point correlation functions are used in a statistical
omogenization framework to characterize different types of het-
rogeneous media. They are useful in the sense that they can
ontain descriptive information about the microstructure being
tudied, including volume fraction, clustering, and spacing of
hases [9,10,20,21]. Vectors with given orientation and length are
rawn onto the image at random position. As the system is a two-
hase composite, the phases at the endpoints are either phase 1
barium silicate) or phase 2 (amorphous). In this study, the minor
hases are included in the amorphous phase. This is because of the
loseness in elastic properties of hexacelsian and silica [22], and
lso, monoclinic celsian and other solid solutions are not observed.
wo-point correlation function is a probability function, Pij, where
is the phase of the initial point, and j is the phase at the end of
he vector. These operations result in four different variables, P11,
12, P21, and P22, satisfying the normality conditions, where �i is
he volume fraction of phase i:

11 + P12 = �1 (1)

21 + P22 = �2 (2)

12 = P21 (3)

As a result, only one of these probabilities is an independent
ariable. Several analytical formulations have been proposed to
epresent correlation statistics that can satisfy the above condi-
ions. The most popular one was postulated by Corson [23,24] in
976 as an exponential regression function to represent two-point
robability functions for an isotropic two-phase random media:
ij(�r) ≡ vivj + (−1)i+jvivj exp(−cijr
nij ) (4)

ere, cij and nij are empirical constants determined by a least square
rror curve fit to the experimental data.
urces 195 (2010) 5726–5730

2.2. Effective elastic modulus

Starting from the elastic properties of each component of the
two-phase composite and microstructure represented by corre-
lation functions, the effective properties will be predicted by
statistical continuum model described below. Here, effective stiff-
ness tensor is defined as C, local stiffness tensor at location r as
c(r). Ergodicity condition is assumed here for the statistical frame-
work. The ensemble average, over the representative volume, V,
will be denoted using brackets 〈 〉. The average elastic moduli is
then [25,26]:

〈
cijkl

〉
=

〈
cijkl(r)

〉
= 1

V

∫
V

cijkl(r) dV (5)

Using Hill’s condition and making the assumption of Kröner
for an infinite medium, the stiffness tensor can be written as (for
details, see Refs. [8,9]):

〈ε�〉 = 〈εcε〉 = 〈ε〉 〈cε 〉 (6)

where � is the local strain tensor and c is the local stiffness tensor.
This can be used to define C:

〈ε〉C〈ε〉 = 〈εCε〉, therefore, C〈ε〉 = 〈cε 〉 (7)

If � and � are ergodic, then one can write:

ε = 〈ε〉 + ε′; � = 〈�〉 + � ′; c = 〈c〉 + c′ (8)

where the ′ denotes the local deviation from the average and
〈�′〉 = 〈�′〉 = 〈c′〉 = 0. To represent local inhomogeneity, a fourth rank
tensor is defined, a, such that:

C = 〈c〉 +
〈

c′a
〉

(9)

After solving for a, which can be seen in depth in the work by Lin and
Garmestani [8], using above equations and denoting the stiffness
for the two phases as c1 and c2, respectively, we are left with:

Cabmn =
〈

cabmn

〉
−

∫
V

drGik,jl(r){c1′
abklc1′

ijmnP11 + c1′
abklc2′

ijmnP12

+c2′
abklc1′

ijmnP21 + c2′
abklc2′

ijmnP22} (10)

or in short form:

C = 〈c〉 = G × F

where F is an 8th rank tensor:

Fabklijmn = c1′
abklc1′

ijmnP11 + c1′
abklc2′

ijmnP12 + c2′
abklc1′

ijmnP21

+c2′
abklc2′

ijmnP12 (11)

G is the Green’s function, defined as the Fourier integral over
k-space:

Glm(r) = 1
8�3

∫
k ∈ k3

G̃lm(k)eikrdk3

= 1
8��̄|r|

{
2ılm − �̄ + �̄

�̄ + 2�̄

(
ılm − rlrm

|r|2
)}

(12)

with the vector, r = r2 − r1 (ri denoting the endpoints of the vector
r in the microstructure), ı is the Dirac delta function, and � and �
are Lamé constants for isotropic tensor 〈c〉, where the bar indicates
that they are averaged. Further details can be seen in Refs. [8,27].
2.3. Voigt and Reuss bounds

The Voigt [28] upper bound and Reuss [29] lower bound
are well-known bounds, used here to validate homogenization
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Table 2
Curve fitting accuracies.

Sample Chi-squared Adjusted R2

G18 4 h aged (RT) 1.56E−04 0.90139
G18 4 h aged (800 ◦C) 2.06E−04 0.89957
G18 1000 h aged (RT) 2.85E−04 0.84401
G18 1000 h aged (800 ◦C) 2.31E−04 0.81438

Table 3
Elastic properties of individual phases [30–32].

Material Young’s modulus (GPa) Shear modulus (GPa)
ig. 5. Two-point correlation functions and fitted curves for samples not reheated.

ethodology used here. The Voigt bound may be considered as pre-
icting the elastic constants of the composite with inclusion and
atrix phases arranged in parallel, or assuming a uniform strain

eld. On the other hand, the Reuss bound takes inclusion and matrix
hases arranged in series resulting in a uniform stress field. In the
wo bounds, the microstructures are simply characterized by vol-
me fractions of components. These two bounds generally deviate
rom each other, especially when the crystalline volume fraction is
uite high or if there is a large difference in individual phase prop-
rty values. The effective stiffness tensor, C, for the Voigt and Reuss
ounds can be calculated as below:

Voigt =
〈

C
〉

(13)

Reuss =
〈

C−1
〉−1

(14)

. Results

Microstructures shown in Figs. 1–4 are characterized using two-
oint correlation functions. Analytical curves proposed by Corson
ere then fitted to the correlation functions.

Figs. 5 and 6 give the experimental two-point correlation func-
ions and the simulated correlation functions represented by the

xponential regression function of images of samples after initial
eat treatments and samples which were heated to 800 ◦C and
ooled, respectively. Error from fitting the experimental two-point
unction data to Corson’s function is demonstrated in Table 2. With
hi-squared errors much less than 5%, the exponential regression

ig. 6. Two-point correlation functions and fitted curves for samples heated again
o 800 ◦C and cooled.
Barium silicate 69.0 28.3
Silica glass (25 ◦C) 73.0 31.5
Silica glass (800 ◦C) 80.0 33.0

function is a good analytical formula to describe two-point func-
tion.

Properties of individual components of the two-phase compos-
ite are shown in Table 3 [30–32]. Barium silicate has the same
elastic modulus at both 25 ◦C and 800 ◦C [33]. Volume fractions
of crystalline and amorphous phases in each microstructure are
given in Table 4. Properties of silica glass were used to estimate
the properties of the matrix phase, due to the high glass transition
temperature, similar behavior in increasing modulus with respect
to increasing temperature in 1000 h aged G18, and similar chemical
compositions.

Because there is no strong contrast in crystalline and amorphous
phases, the Voigt–Reuss bounds are very close. The Voigt and Reuss
bounds, classical upper and lower bounds are given by the following
equations for composites of N phases:

EV =
N∑

i=1

Ei�i (15)

1
ER

=
N∑

i=1

�i

Ei
(16)

where E denotes elastic property (Young’s modulus or shear mod-
ulus), � volume fraction, and i phase identity.

Figs. 7 and 8 show the effective property predicted by statisti-
cal continuum mechanics model, the Voigt and Reuss bounds for
the Young’s modulus and shear modulus, respectively. From the
microstructures in Figs. 1–4, the two-point correlation function
prediction of the effective Young’s modulus and shear modulus
falls within Voigt bound and Reuss bound, while being closer to
the Voigt upper bound. The predicted properties do not match the
exact properties of G18, shown in Table 1, since the properties of
the actual individual phases were not used in this calculation, due
to unavailability of data. The model using two-point correlation
functions is accurate in its prediction of G18, using the proper-
ties for individual phases shown in Table 3. This is because both

the shear and elastic modulus predictions fall within the Voigt and
Reuss bounds. Possible error may be due to porosity affecting the
volume fractions and exponential regression curve fitting error. It
is promising that this method can be used, due to the comparable
data used, results, and the properties of G18.

Table 4
Volume fractions of phases for Figs. 1–4.

Sample Crystalline Amorphous

G18 4 h aged (RT) 0.53 0.47
G18 4 h aged (800 ◦C) 0.54 0.46
G18 1000 h aged (RT) 0.55 0.45
G18 1000 h aged (800 ◦C) 0.72 0.28
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Fig. 7. Effective Young’s modulus predictions.

4

t
r
e
p
t
v
r
t
m
l
m
b
f

[

[

[
[
[
[
[
[
[

[
[

[

[

[
[
[
[
[
[
[

49–58.
Fig. 8. Effective shear modulus predictions.

. Conclusions

Two-point correlation functions have been used to characterize
he microstructures of random, uniform glass–ceramic seal mate-
ials with different aging temperatures and durations. A simple
xponential regression function was used to represent the two-
oint correlation function. Elastic properties are predicted from
he microstructure represented by two-point function and indi-
idual properties by statistical continuum mechanics. Predicted
esults falls within the Voigt and Reuss bounds. The weak con-
rast in individual elastic property values may account for effective
oduli calculated to be closer to Voigt bound. The two-point corre-
ation function method has shown that it is, in general, a reasonable

ethod to find the effective modulus for these types of BCAS-
ased glass–ceramics. More importantly, the two-point correlation
unction method maybe further used to optimize the volume frac-

[
[
[
[

urces 195 (2010) 5726–5730

tion and morphology of the ceramic phase to engineer the elastic
modulus of the SOFC seal to ensure its structural integrity during
operation and thermal cycling.
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